Plakinamines C and D and Three Other New Steroidal Alkaloids from the Sponge *Corticium* sp.

Simona De Marino, [a] Maria Iorizzi, [b] Franco Zollo,*[a] Christos Roussakis, [c] and Cécile Debitus [d]

Dedicated to the memory of Professor Luigi Minale, deceased May 11th, 1997

Keywords: Corticium sp. / Steroids / Alkaloids / Secondary metabolites / Cytotoxic activity

Five new steroidal alkaloids, plakinamines C (1) and D (2), and the related compounds 3–5 have been isolated from the Vanuatu sponge *Corticium* sp. Their structures have been elucidated by a detailed spectroscopic analysis, including 2D-HMBC and ROESY correlation experiments. The new compounds show significant in vitro cytotoxicity against

human bronchopulmonary non-small-cell lung carcinoma cells (NSCLC-N6) with IC_{50} values of < 3.3–5.7 μ g/mL. When tested against T leukemia virus type one (HTLV-I), compounds 1, 4 and 5 were found to exhibit slight anti-HIV activity.

Introduction

Steroidal alkaloids are well-known metabolites of certain terrestrial plants,^[1] but only a few examples have been reported from marine organisms.^[2,3]

As part of a systematic screening of the bioactive compounds from marine organisms, we have examined the marine sponge *Corticium* sp., collected off Porth Havannah, Vanuatu, South Pacific, the crude ethanolic extracts of which showed 100% cytotoxic activity towards KB cells at 10 μ g/mL. The first paper on the sponge *Corticium* sp. dealt with the isolation of lokysterolamines A and B,^[3] and recently we have described new modified steroidal alkaloids with seven-membered B rings obtained from the same sponge.^[4]

Results and Discussion

In this paper we report the isolation and structure elucidation of five new steroidal alkaloids 1-5 following a bioassay-guided fractionation. The methanolic extract of the lyophilized sponge *Corticium* sp. was subjected to Kupchan's partitioning methodology. ^[5] In preliminary tests on the NSCLC-N6 cell line, the active CHCl₃ and nBuOH fractions showed IC_{50} values < 1.1 μ g/mL and < 3.3 μ g/mL,

respectively. These fractions were chromatographed and the components were purified to afford pure compounds 1–5. Plakinamines C (1) and D (2), and the related alkalosteroids 3–5 bear a skeletal relationship to the previously described plakinamine A.^[2] The steroidal nature of 1–5 was suggested by comparison with literature data and by NMR experiments.

Plakinamine C (1)

Compound 1 showed a molecular ion peak (HREIMS) at m/z = 510.4229, corresponding to the molecular formula $C_{33}H_{54}N_2O_2$ (calcd. 510.4185). This was further supported by ¹³C-NMR data, which, in combination with the COSY spectrum, clearly indicated the steroidal nature of 1. The ¹H-NMR spectrum in CD₃OD exhibits two methyl group singlet signals at $\delta = 0.62$ and $\delta = 0.74$, and a methyl doublet at $\delta = 0.98$ (J = 6.8 Hz), which were correlated by HMQC to carbon atom signals at $\delta = 12.6$, 15.3 and 19.6 (C-18, C-19 and C-21, respectively). The ¹³C-NMR spectrum also features a signal at $\delta = 211.8$ attributable to a ketone function. The downfield shift of the C-19 signal is compatible with the ketone carbon atom C-4 of the steroid nucleus, and this was corroborated by the chemical shift of the 5α-H signal, which was found to be downfield shifted at $\delta = 2.40$ by analysis of the COSY spectrum. When the COSY experiment was performed in [D₅]pyridine, the 3-H signal was observed as a doublet of doublets at $\delta = 3.14$ (J = 12.0, 5.8 Hz). The ¹H-NMR spectrum (CD₃OD) also features a signal at $\delta = 2.37$ (s), corresponding to 6 H, typical for two N-methyl groups. The downfield shift of the C-3 signal ($\delta = 72.0$) suggests a β orientation of the dimethylamino group; in the corresponding 3α-aminosteroids the ¹³C-NMR chemical signal is found at much higher field. ^[6] This observation is in agreement with data obtained from ROESY experiments in [D₅]pyridine, which show a mutual

[[]a] Dipartimento di Chimica delle Sostanze Naturali, Università di Napoli "Federico II", via D. Montesano 49, I-80131 Napoli, Italy Fax: (internat.) + 39(0)81/748-6552 E-mail: fzollo@cds.unina.it

[[]b] Dipartimento di Scienze e Tecnologie Agro-Alimentari, Ambientali e Microbiologiche, Università degli Studi del Molise, via De Sanctis, I-86100 Campobasso, Italy

[[]c] Institut des Substances et Organismes de la Mer (ISOMER),
Faculté de Pharmacie

Faculté de Pharmacie, 1, Rue Gaston Veil, F-44035 Nantes Cedex 01, France

[[]d] ORSTOM, Centre de Nouméa, B. P. A5, Nouméa, New Caledonia

Scheme 1. New steroidal alkaloids from the sponge lortieium sp.

correlation of 3α -H ($\delta = 3.14$) with 5α -H at $\delta = 2.40$, further corroborating the A/B *trans* junction. The configuration of the substituent at C-3 in **1** is epimeric to that reported for plakinamine A, which was established by comparison of the relevant 13 C-NMR shifts with those of synthetic 3α -amino- 5α -ergosta-7,22-diene. The 13 C-NMR spectrum of **1** also features four low-field signals. Those at $\delta = 117.5$ and $\delta = 140.0$ were assigned to a Δ^7 double bond, in close analogy with plakinamine A. $^{[2]}$

The substitution pattern of the side chain was elucidated by interpretation of ¹H-¹H coupling constants, 2D-COSY and HMBC data (Table 2). The ¹H-NMR spectrum features signals for two methyl groups ($\delta = 1.11$ and $\delta = 1.12$, 2 s), an oxygenated methylene ($\delta = 3.70$, t, J = 6.2 Hz) and an olefinic proton ($\delta = 5.29$). By means of an HMQC experiment, these proton signals could be correlated with the corresponding carbon signals at $\delta = 23.5, 23.6, 61.5$ and 119.3, respectively. The presence of two methylene triplets at δ = 2.87 (J = 6.8 Hz) and $\delta = 2.65$ (J = 6.4 Hz), showing correlation by HMOC with carbon signals at $\delta = 50.4$ and $\delta = 51.9$, suggests nitrogen substitution in the side chain. Comparison of the ¹³C-NMR data with those of plakinamine $A^{[2]}$ allowed us to establish the stereochemistry at C-20, and also revealed the presence of two quaternary carbon atoms with signals at $\delta = 149.7$ and $\delta = 64.6$.

Interpretation of the COSY spectrum led to three partial structures: C-21 to C-23, C-28 to C-29, and $-NCH_2$ -CH₂OH to $-NCH_2CH_2$ OH. On the basis of HMBC data (Table 2), it could be established that these structural units are connected through non-protonated carbon atoms, including Me-26/C-24 and C-25; 28-H₂/C-23, C-24, C-29; and

29-H₂/C-24, C-25, C-28, -N*CH*₂CH₂OH, implying the presence of a pyrrolidine ring. HMBC cross-peaks 29-H₂/-N*CH*₂CH₂OH and -N*CH*₂CH₂OH/C-25, C-29 imply that the ethanolamine residue is bonded to the pyrrolidine ring through the nitrogen atom.

Acetylation of plakinamine C (1) with acetic anhydride/pyridine gave the amorphous monoacetate 1a, the 1H -NMR spectrum of which showed the signals corresponding to the hydroxy methylene protons of the ethanolamine residue downfield shifted at $\delta = 4.30$.

Plakinamine D (2)

The HREIMS of 2 showed a molecular ion peak at m/z = 510.4229, in agreement with the molecular formula C₃₃H₅₄N₂O₂ (calcd. 510.4185), indicating this component to be an isomer of compound 1. The ¹H- and ¹³C-NMR data of 2 are superimposable on those of 1 as far as the side chain from C-22 to -NCH₂CH₂OH is concerned, but significantly different NMR shifts are seen for the tetracyclic nucleus. The ¹³C-NMR spectrum features a signal at $\delta = 212.4$, attributable to the ketone carbon atom C-4, and signals for two quaternary carbon atoms at $\delta = 130.1$ and $\delta = 135.3$. These spectral features indicate that 2 possesses a Δ^8 or $\Delta^{8(14)}$ steroidal nucleus. The former was favored owing to the fact that the observed chemical shift of Me-18 at $\delta = 0.69$ is in excellent agreement with that reported for Δ^8 sterols, but is significantly different from that reported for $\Delta^{8(14)}$ sterols.^[7] Two-dimensional COSY, HMQC, and HMBC correlations allowed assignment of all the proton

Table 1. ¹H- (500 MHz) and ¹³C- (125 MHz) -NMR assignments (CD₃OD) of the steroid nucleus in compounds 1-5

	$f 1$ and $f 3^{[a]}$			2	4 and 5 ^[d]	
C-	$\delta_{H}^{[b]}$	$\delta_{ m C}$	δ_{H}	$\delta_{ m C}$	δ_{H}	δ_{C}
1	2.12, 1.73	38.0	2.11, 1.79	36.5	1.66, 1.43	32.8
2 3	1.90	22.5	1.93	24.0	1.76, 1.33	30.7
3		72.0		71.6	3.28 br. s	47.6
4		211.8		212.4	1.70, 1.47	35.2
5	2.40 dd ^[c]	55.0	2.49 br. t	56.0	1.68	35.6
6	2.18, 1.92	26.0	1.76, 1.72	18.3	2.03, 1.33	29.5
7	5.25 br. s	117.5	2.26, 1.81	26.1	5.24 br. s	118.8
8		140.0		130.1		140.5
9	2.07	50.7		135.3	1.86	50.7
10		42.6		43.9		35.9
11	1.74, 1.59	23.2	2.12	27.2	1.54, 1.68	22.3
12	2.10, 1.78	40.6	2.09, 1.50	38.2	2.13, 1.33	40.9
13		44.6		43.4		44.6
14	1.92	56.2	2.17	53.1	1.93	56.4
15	1.60, 1.50	23.8	1.68, 1.42	24.8	1.49, 1.60	23.9
16	1.74	29.0	2.01, 1.44	29.9	1.84, 1.61	28.4
17	1.39	57.3	1.28	56.3	1.29	58.3
18	0.62 s	12.6	0.69 s	11.7	0.62 s	12.3
19	0.74 s	15.3	0.92 s	19.6	0.86 s	12.6
$N(CH_3)_2$	2.37 s	42.0				

[[]a] Data obtained from plakinamine C (1). - [b] ^{1}H assignments aided by COSY experiments. - $^{[c]}$ Overlapped with other signals. - $^{[d]}$ Data obtained from compound 5.

Table 2. ¹H- (500 MHz) and ¹³C- (125 MHz) -NMR assignments and HMBC correlations of the side chains in compounds 1-3 (CD₃OD)

	1 and $2^{[a]}$			0	3	III ID C
C-	$\delta_{H}^{[b]}$	$\delta_{\rm C}$	HMBC ^[c]	δ_{H}	δ_{C}	HMBC
20	1.53	38.5		2.20	42.3	
21	0.98 (6.8)	19.6	C-17,C-20,C-22	1.11 d (6.6)	21.5	C-17,C-20,C-22
22	2.13, 1.76	36.5	C-20,C-21,C-23,C-24	5.52 dd (15.4, 8.8)	136.0	C-17,C-20,C-21
23	5.29 ^[d]	119.3	C-28	6.42 d (15.4)	126.0	C-20,C-24,C-28
24		149.7			128.0	
25		64.6			127.3	
26	1.11 s	23.5	C-24,C-25	2.93 br. s	60.8	C-24,C-27,C-29,NCH ₃
27	1.12 s	23.6		1.76 s	16.4	C-25,C-26
28	2.48 br. t	28.0	C-23,C-24,C-29	2.30 br. t	27.0	
29	2.87 t (6.8)	50.4	C-24,C-25,C28, N <i>CH</i> ₂ CH ₂ OH	2.60 t (5.9)	53.2	C-26,C-28,NCH ₃
NCH ₂ CH ₂ OH	2.65 t (6.4)	51.9	C-25,Č-29, NCH ₂ <i>CH</i> ₂ OH			
NCH ₂ CH ₂ OH	3.70 t (6.2)	61.5	N <i>CH</i> ₂ CH ₂ OH			
NCH ₃	. ()		2 2 -	2.36 s	45.5	C-26,C-29

^[a] Data obtained from plakinamine C (1). $^{-}$ [b] Coupling constants (in Hz) are given in parentheses; 1 H assignments aided by COSY experiments. $^{-}$ [c] HMBC optimized for $^{2,3}J_{\text{CH}} = 10$ Hz. $^{-}$ [d] Overlapped with signal of 7-H.

and carbon resonances^[8] and fully confirmed this hypothesis (Tables 1 and 2).

Other Components

The molecular composition of compound 3 was determined as $C_{32}H_{50}N_2O$ from the pseudomolecular ion peak at $m/z=479~[M+H]^+$ in the positive-ion FAB mass spectrum, which is consistent with the ^{13}C -NMR data. Analysis of the ^{1}H -, ^{13}C -NMR and COSY spectra revealed the tetracyclic system of the steroid nucleus of 3 to be identical to that observed for plakinamines C (1) and D (2). A ROESY experiment showed mutual correlation between 3α -H and 5α -H, suggesting β orientation of the dimethylamino group at C-3. The substitution pattern of the side chain was eluci-

dated by analysis of 2D-COSY, HMQC, and HMBC experiments. The spin sequence from C-20 to C-29 was identical to that reported for the side chain of plakinamine B,^[2] with a tetrasubstituted olefinic bond (δ = 128.0 and 127.3). The UV absorption at $\lambda_{\rm max}$ = 242 nm (ϵ = 2900), together with the chemical shifts of the C-22 and C-23 signals, indicates the presence of a conjugated diene between C-22 and C-25. HMBC correlations (Table 2) allowed the structural elucidation of 3, which as a result can be defined as *N*,*N*-dimethyl-4-oxo-3-*epi*-plakinamine B.

Steroidal alkaloid **4** is the 24,25-dihydro derivative of plakinamine A.^[2] It shows a pseudomolecular ion peak at $m/z = 425 \text{ [M + H]}^+$ in the positive-ion FAB mass spectrum, corresponding to the composition $C_{29}H_{48}N_2$, which is in accordance with ¹³C-NMR data. Analysis of its ¹H-,

FULL PAPER

¹³C-NMR and COSY spectra (Table 1) revealed the tetracyclic system of 4 to be identical to that of plakinamine A. The ¹³C-NMR spectrum shows three low-field signals. The signals at $\delta = 118.8$ and $\delta = 140.5$ are in good agreement with literature values for C-7 and C-8 of Δ^7 sterols, [7][8] while the signal at $\delta = 183.0$ can be assigned to an imine function. The most significant difference observed in the ¹H-NMR spectrum of **4** is the presence of two methyl signals at $\delta = 0.76$ (d, J = 7.0 Hz) and $\delta = 1.04$ (d, J = 7.0Hz), attributable to the methyl groups Me-26 and Me-27. In the COSY spectrum, both of these signals show coupling with a methine proton at $\delta = 2.14$, which in turn shows correlation with a signal at $\delta = 2.88$. This last proton shows cross-peaks with signals at $\delta = 1.90$ and $\delta = 1.79$ (28-H₂), which in turn correlate with a triplet at $\delta = 3.71$ (29-H₂). The latter can be assigned to the methylene group in a ring formed between the imine nitrogen atom and the isopropyl group. Further useful information was provided by HMBC experiments, which showed correlations between the proton signal at $\delta = 3.71$ and the imine signal at $\delta = 183.0$. Other correlations found in the HMBC spectrum are reported in

Compound 5 is related to steroidal alkaloid 4. It has the molecular formula C₃₀H₅₂N₂, as determined on the basis of ¹³C-NMR data and from analysis of its positive-ion FAB mass spectrum, which shows a pseudomolecular ion peak at $m/z = 441 \text{ [M + H]}^+$, i.e. 16 mass units more than 4. The structure of the steroid nucleus (Table 1) was readily established by comparison of the 1H-, 13C-NMR and COSY spectral data with those of 4, since the chemical shifts of the signals of carbon atoms 1 to 19 are virtually identical in the two compounds. The main difference is observed in the substitution pattern of the side chain. In the ¹³C-NMR spectrum of 5, the imine signal of 4 is replaced by a carbon signal at $\delta = 67.8$. Interpretation of the COSY data revealed a spin sequence from C-20 to C-29 indicative of a saturated pyrrolidine ring. The ¹H-NMR spectrum of **5** also features a signal at $\delta = 2.35$ (s, 3 H), indicating an additional N-methyl group compared to compound 4. HMBC correlations (Table 3) suggest that this function is located on the nitrogen atom of the pyrrolidine ring, which is supported by the ¹³C-NMR data.

Cytotoxicity Tests

When tested against human bronchopulmonary non-small-cell lung carcinoma cells (NSCLC-N6), all compounds exhibited in vitro cytotoxic activity. Compounds 3, 4 and 5 showed activity at the tested concentrations, with IC_{50} values of 3.6 µg/mL, 5.7 µg/mL, and 4.9 µg/mL, respectively, while plakinamine D (2) was cytotoxic with $IC_{50} < 3.3$ µg/mL. Furthermore, the compounds showed anti-HIV activity, which was monitored by the efficiency of the substrate to inhibit *syncytia* formation after HIV infection of an MT₄ cell line, as described previously. [9,10] A slight delay of infection was observed with compound 4 at 0.05 µg/mL, with plakinamine C (1) at 0.1 µg/mL, and with compound 5 at 0.1 µg/mL. The remaining compounds were toxic at the concentrations tested.

Experimental Section

General: NMR measurements were performed with a Bruker AMX-500 spectrometer equipped with a Bruker X-32 computer, using the UXNMR software package. Two-dimensional homonuclear proton chemical shift correlation (COSY) experiments were recorded by employing the conventional pulse sequence. [11] The HMQC and ROESY experiments were performed according to Bax et al. [12] The ROESY experiment was acquired in phase-sensitive mode (TPPI). ¹H-detected heteronuclear multiple bond correlation (HMBC) spectroscopy was performed according to Bax and coworkers. [12,13] — Mass spectra were recorded with a VG Prospec instrument equipped with an FIB source (Cs⁺ ion bombardment) using a glycerol or glycerol/thioglycerol (3:1) matrix.

Animal Material: Samples of the sponge *Corticium* sp. were collected at a depth of 12–18 m at Efaté, Porth Havannah, Vanuatu, South Pacific, in July 1996. The samples were frozen immediately after collection and lyophilized to yield 180 g of dry mass. The sponge was identified by Dr. John Hooper of the Queensland Museum, Brisbane, Australia, as *Corticium* sp. (Homosclerophorida,

Table 3. ¹H- (500 MHz) and ¹³C- (125 MHz) -NMR assignments and HMBC correlations of the side chains in compounds **4** and **5** (CD₃OD)

C-	$\delta_{H}^{[a]}$	$rac{4}{\delta_{ m C}}$	HMBC ^[b]	δ_{H}	5 δ _C	НМВС
20 21 22	1.80 0.90 (6.2) 2.47, 2.04	35.3 19.2 39.7	C-17,C-20,C-22 C-23	1.57 1.04 d (6.2) 1.60, 1.35	35.4 19.7 42.5	C-17,C-20,C-22
23 24 25	2.88 br. t 2.14	183.0 56.4 29.3	C-23	2.22 1.83 1.79	67.8 53.3 31.4	NCH ₃
26 27 28	1.04 d (7.0) 0.76 d (7.0) 1.90, 1.79	22.1 16.5 30.7	C-24,C-25,C-27 C-24,C-25,C-26	0.97 d (6.8) 0.91 d (6.4) 1.82, 1.68	17.6 22.7 25.1	C-24,C-25,C-27 C-24,C-25,C-26
29 NCH ₃	3.71 br. t	59.7	C-23	2.96 t (7.5), 2.26 2.35 s	57.4 40.8	C-23,C-29

[[]a] Coupling constants (in Hz) are given in parentheses; 1 H assignments aided by COSY experiments. $^{-}$ [b] HMBC optimized for $^{2,3}J_{CH} = 10$ Hz.

Plakinidae). A voucher specimen (R1718) has been deposited at the ORSTOM Center in Nouméa, New Caledonia.

Extraction and Isolation: The lyophilized sponge (180 g) was extracted by blending with MeOH (4 × 1 L). The combined extracts were concentrated and subjected to Kupchan's partitioning scheme to give four extracts: n-hexane (4.8 g), CCl₄ (1.4 g), CHCl₃ (2.7 g), and nBuOH (5.9 g), which were each tested against the NSCLC-N6 cell line. The *n*-hexane fraction proved inactive, while the CCl₄, CHCl₃, and nBuOH fractions showed cytotoxic activity with IC₅₀ values of 17.9 μ g/mL, < 1.1 μ g/mL, and 3.3 μ g/mL, respectively. -The more cytotoxic CHCl₃ and nBuOH fractions were subsequently purified. The CHCl₃ extract was fractionated by DCCC using CHCl₃/MeOH/H₂O (7:13:8) in the ascending mode (the lower phase was the stationary phase). Fractions (6 mL each) were collected and examined by TLC on SiO₂ with CHCl₃/MeOH/H₂O (80:18:2) as eluent. Fractions 6-28 were pooled and purified by HPLC on a C_{18} μ -Bondapak column (30 cm \times 3.9 mm i.d.) eluting with MeOH/H₂O/TEA (92:8:0.5) to yield pure plakinamine C (1) (10.0 mg), plakinamine D (2) (2.5 mg), and compound 5 (8.4 mg). Fractions 32-47 from the DCCC were chromatographed on a Sephadex LH-20 column (3 × 80 cm), eluting with MeOH, to give three main fractions: 1-30, 31-69, and 70-120. Fractions 31-69were then purified by HPLC (C_{18} μ -Bondapak column, 30 cm \times 3.9 mm i.d.) under the same conditions as above to give pure compound 4 (7.5 mg). – The *n*BuOH extract was submitted to DCCC with nBuOH/Me₂CO/H₂O (3:1:5) in the descending mode (the upper phase was used as stationary phase). The obtained fractions were then separated by reversed-phase HPLC (C₁₈ μ-Bondapak column, 30 cm \times 3.9 mm i.d.) with MeOH/H₂O/TEA (92:8:0.5) as the eluent, to give pure compound 3 and two modified steroidal alkaloids.[4]

Plakinamine C (1): Yield: 10.0 mg; $[\alpha]_D = +29.4$ (c = 0.016, CHCl₃/MeOH, 1:1); ¹H- and ¹³C-NMR spectral data of the steroid nucleus are given in Table 1, and those of the side chain in Table 2.

Plakinamine C Acetate (1a): A solution of 1 (1 mg) in acetic anhydride/pyridine (1:1) was left to stand at room temperature for about 12 h. The solvents were then evaporated under reduced pressure affording 1 mg of the monoacetate 1a.

Plakinamine D (2): Yield: 2.5 mg; $[\alpha]_D = +25.2$ (c = 0.013, CHCl₃/ MeOH, 1:1); ¹H- and ¹³C-NMR spectral data of the steroid nucleus are given in Table 1, and those of the side chain in Table 2.

Compound 3: Yield: 25.2 mg; $[\alpha]_D = +35.4$ (c = 0.014, CHCl₃/ MeOH, 1:1); ¹H- and ¹³C-NMR spectral data of the steroid nucleus are given in Table 1, and those of the side chain in Table 2.

Compound 4: Yield: 7.5 mg; $[\alpha]_D = +7.4$ (c = 0.015, CHCl₃/ MeOH, 1:1); ¹H- and ¹³C-NMR spectral data of the steroid nucleus are given in Table 1, and those of the side chain in Table 3.

Compound 5: Yield: 8.4 mg; $[\alpha]_D = +23.0$ (c = 0.020, CHCl₃/ MeOH, 1:1); ¹H- and ¹³C-NMR spectral data of the steroid nucleus are given in Table 1, and those of the side chain in Table 3.

Acknowledgments

We thank the EEC project "Marine Science and Technology, MAST III" (Contract MAS 3-CT95-0032) for financial support.

- [1] I. W. Southon, J. Buckingham, Dictionary of Alkaloids (Eds.: I. W. Southon, J. Buckingham), Chapnan and Hall, London, New York, 1989.
- [2] M. R. Rosser, D. J. Faulkner, J. Org. Chem. 1984, 49, 5157 - 5160.
- [3] J. Jurek, P. J. Scheuer, M. Kelly-Borges, J. Nat. Prod. 1994, 57, 1004 - 1007
- [4] S. De Marino, F. Zollo, M. Iorizzi, C. Debitus, Tetrahedron Lett. 1998, 39, 7611-7614.
- [5] S. M. Kupchan, R. W. Britton, M. F. Ziegler, C. W. Siegel, J. Org. Chem. 1973, 38, 178-179.
- [6] P. K. Agrawal, S. K. Srivastava, W. Gaffield in Alkaloids: Chemical and Biological Perspectives, vol. 7 (Ed.: S. W. Pel-
- letier), Springer-Verlag, New York, **1991**, p. 197. N. S. Bhacca, D. H. Williams, *Application of NMR Spectroscopy in Organic Chemistry*, Holden-Day, Inc., San Francisco, **1966**,
- p. 19–23.

 [8] J. W. Blunt, J. B. Stothers, *Org. Magn. Reson.* 1977, *9*, 439.

 [9] F. Rey, F. Barré-Sinoussi, H. Schmidtmayerova, J. C. Chermann, *J. Virol. Methods* 1987, *16*, 239–249.

 [10] F. Rey, G. Donker, I. Hirsh, J. C. Chermann, *Virology* 1991,
- 181, 165–171.

 [11] W. P. Aue, E. Bartoldi, R. R. Ernst, J. Chem. Phys. **1976**, 64,
- [12] A. Bax, S. Subramanian, J. Magn. Res. 1986, 67, 565-569.
- [13] A. Bax, M. F. Summers, J. Am. Chem. Soc. 1986, 108, 2093 - 2094.

Received August 3, 1998 [O98364]